

IS A CALPROTECTIN A CALPROTECTIN: VARIATION IN CALPROTECTIN RESULTS BY METHODOLOGY

Jose Cacicero², Shahzaib Khan¹, Chris Wisherd², Bethany Bell², Annie Levine¹, and Thomas Wallach¹¹SUNY Downstate Health Sciences University; Brooklyn, NY, ²American Laboratory Products Company (ALPCO); Salem, NH

Abstract

Background: Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disorder mediated by episodes of remittent inflammation in the gastrointestinal tract and beyond. Noninvasive testing with fecal calprotectin, a neutrophil activity byproduct, is frequently used to identify patients requiring endoscopic evaluation. While notably elevated calprotectin is highly suggestive, mild elevations are less clear, and often not linked with IBD. Multiple methodologies of testing calprotectin exist, and we hypothesized that part of the "grey area" may come from alterations to results based on methodology. We sought to assess this by comparing testing methodology on standardized patients.

Methods: We compared FDA submission data from current approved diagnostic methodologies with a novel method developed at ALPCO. We identified 76 patients diagnosed with IBD after undergoing gastrointestinal endoscopy/colonoscopy and histologic confirmation of disease. We also identified 122 patients with confirmed IBS who were diagnosed with the Rome IV criteria. We then analyzed stool samples from each of these patients using calprotectin assays and compared accuracy to previously existing endoscopic results to generate test specificity/sensitivity results.

Results: Wide variation in results was observed using different methodologies, with substantial variation in sensitivity, specificity, and positive predictive value (Table 3). While the majority of assays had sensitivity > 90%, specificity ranged widely, with only four tests exceeding 90%. False positive rates were generally high, with only four assays < 10%.

Discussion: Our results demonstrate a concerning degree of variation in fecal calprotectin results by methodology. Further evaluation is needed using neutral party testing, but standardization may improve accuracy and reduce unnecessary colonoscopy.

Background

Inflammatory bowel diseases (IBD), specifically Crohn's disease (CD) and ulcerative colitis (UC), are complex immune-mediated conditions characterized by chronic remittent episodes of inflammation that manifest within and beyond the gastrointestinal tract [1, 2]. These debilitating conditions are associated with substantial morbidity and challenge healthcare systems worldwide, with rising incidence rates linked to the Westernization of lifestyle habits and dietary cues [1, 3]. While the primary site of injury is the gut, these diseases are increasingly recognized as systemic disorders with significant extraintestinal manifestations [1, 4].

In the clinical management of IBD, fecal calprotectin (fCP) has emerged as a significantly validated, non-invasive biomarker used to evaluate gut inflammation and guide therapeutic decisions [3, 5]. Calprotectin is an abundant cytosolic protein complex composed of two monomers, S100A8 and S100A9, belonging to the S100 family of leukocyte proteins [6, 7]. It constitutes approximately 45% to 60% of the total protein in the cytosol of granulocytes (neutrophils) [7, 8]. Its primary utility lies in its high sensitivity for reflecting recruited or activated phagocytes and its ability to discriminate between inflammatory conditions and functional gut diseases, such as irritable bowel syndrome (IBS) [5, 9].

Despite its utility, the clinical interpretation of mildly elevated calprotectin levels presents a significant diagnostic challenge. While levels exceeding 600 $\mu\text{g}/\text{g}$ are strongly associated with active IBD, values between 100 and 250 $\mu\text{g}/\text{g}$ are considered a diagnostic "grey zone" that is frequently difficult for physicians to interpret [9, 10]. These intermediate elevations are often not linked to IBD and can be triggered by viral infections, gastrointestinal bleeding, or common medications such as non-steroidal anti-inflammatory drugs (NSAIDs) and proton pump inhibitors [2, 11]. Relying on these ambiguous figures can lead to unnecessary invasive endoscopies in symptomatic patients who lack organic disease, increasing patient

discomfort and overall healthcare costs (also discussed at Poster Abstract #2234024) [2, 10, 15].

In addition to the aforementioned factors that could lead to elevated Calprotectin, we hypothesize that this persistent "grey area" in diagnostic interpretation may also be driven by limitations in current calprotectin assessment methodologies and a lack of international standardization [12, 13]. Various commercial assays utilize different antibodies targeting different protein epitopes, which can lead to significant quantitative differences in reported values [13]. Furthermore, the lack of standardized guidelines for interpreting intermediate concentrations renders these results challenging for clinicians to use in daily practice [12]. This study assessed the possibility that these methodological variabilities contribute to the clinical gap between biochemical results and actual endoscopic findings [13, 14].

References:

- Jukic et al. "Calprotectin: from biomarker to biological function." *Gut*, 2021.
- Harbord et al. "The first European evidence-based consensus on extra-intestinal manifestations in IBD." *J Crohns Colitis*, 2016.
- Schoepfer et al. "Discriminating IBD from IBS: comparison of the test performance of fecal markers." *Inflamm Bowel Dis*, 2008.
- Donato et al. "Functions of S100 proteins." *Curr Mol Med*, 2013.
- Edgeworth et al. "Identification of p8.14 as a highly abundant heterodimeric calcium binding protein complex." *J Biol Chem*, 1991.
- von Roos et al. "Diagnostic precision of fecal calprotectin for IBD and colorectal malignancy." *Am J Gastroenterol*, 2007.
- Lee et al. "Fecal Calprotectin Testing in Primary and Secondary Care." *Gut*, 2013.
- Zolner et al. "Fecal biomarkers in IBD: calprotectin versus Lipocalin-2." *J Crohns Colitis*, 2021.
- Turner et al. "STRIDE-II recommendations." *Gastroenterology*, 2021.
- Roseth et al. "Assessment of the neutrophil dominating protein calprotectin in feces." *Scand J Gastroenterol*, 1992.
- Jukic et al. "Fecal Detection of Calprotectin Subunits Links Inflammatory Bowel Disease Activity With Chronicity of Intestinal Inflammation." *Gastroenterology*, 2025.
- Fagerhol et al. "Calprotectin (the 11 leucocyte protein)." *Stimulus response coupling*, 1990.
- Vicente-Stein et al. "Analytical and clinical performance of the fully-automated LIASON XL calprotectin immunoassay." *Practical Laboratory Medicine*, 2020.
- Oyaert et al. "Analytical performance and diagnostic accuracy of six different faecal calprotectin assays in IBD." *Clin Chem Lab Med*, 2017.
- Mindemark et al. "Ruling out IBD: Estimation of the possible economic effects of pre-endoscopic screening with f-calprotectin." *Clin Biochem*, 2012.
- Johnson et al. "Comparison of fecal calprotectin and pancreatic elastase assays based on proficiency testing results." *Clin Biochem*, 2022.

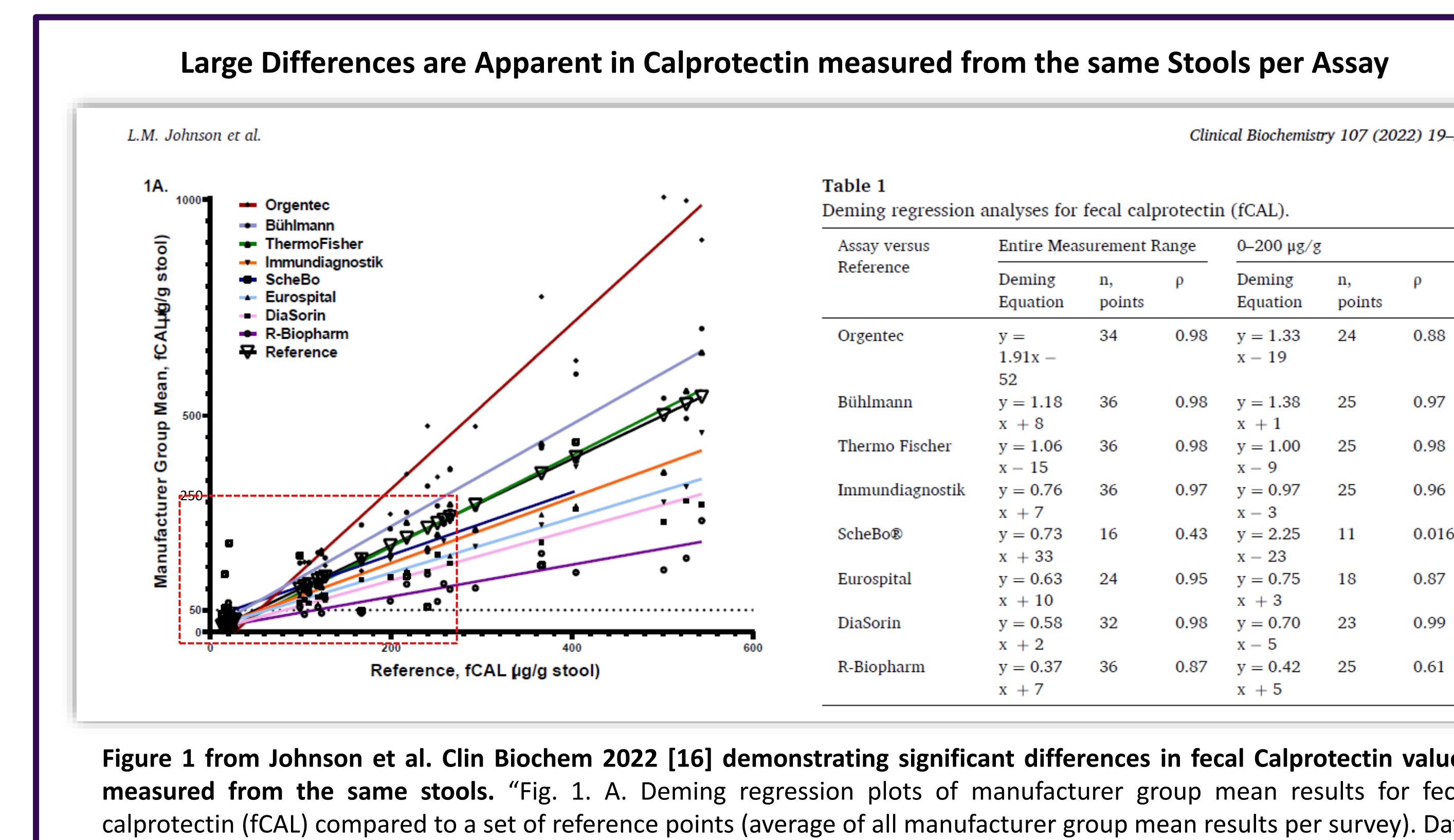
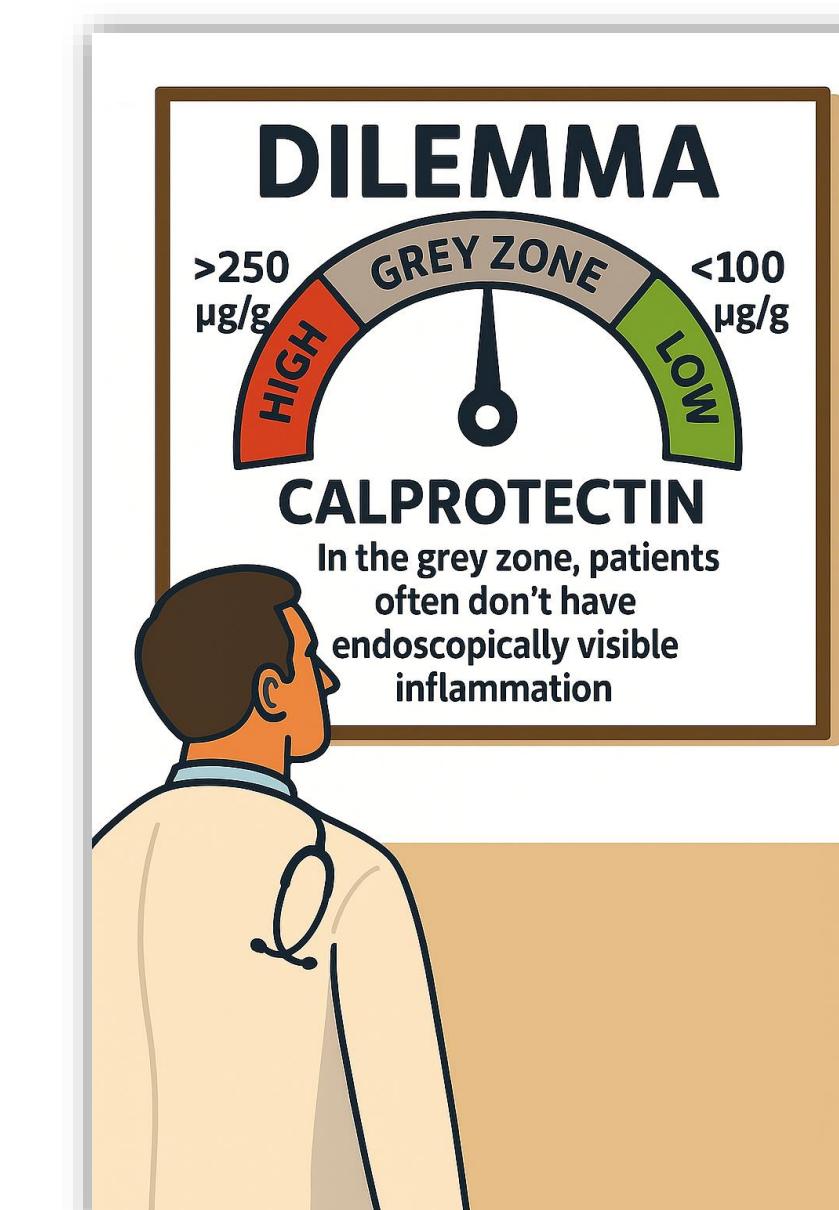
Purpose

In this study, we attempt to determine whether much of discrepancies of patient samples landing in the calprotectin grey zone are caused by the different methodologies used to measure it.

Methods

Comparison of FDA approved Fecal Calprotectin Assays. We compared FDA submission data from current approved diagnostic methodologies with a novel method developed at ALPCO. For this comparison we examined:

- 1) The types of antibodies and calibrator materials used in each immunoassay.
- 2) The clinical sensitivity and specificity (with borderline samples).
- 3) Values achieved from various fCal assays with clinically characterized samples.



ALPCO Fecal Calprotectin Assay. We tested our assay by measuring the calprotectin from fecal samples of 76 patients diagnosed with IBD after undergoing gastrointestinal endoscopy/colonoscopy and histologic confirmation of disease. We also identified 122 patients with confirmed IBS who were diagnosed with the Rome IV criteria. We compared our accuracy to previously existing endoscopic results to generate test specificity/sensitivity results.

Results

Diversity of Antibodies and calibrator materials used in each immunoassay. As seen in Table 1, a wide mix of monoclonal and polyclonal antibodies are used by manufacturers. With the assays that use rabbit polyclonal antibodies, this could be a source of variability since these antibodies can change over time due to aging rabbits or use of different rabbits. There is also a mix use of native or recombinant calprotectin by manufacturer. Since there is no International Standard for Calprotectin, it is also challenging to know how each manufacturer calibrated their assays.

Table 1. Comparison of Antibody Types and Calibrator Material used in each 510K Cleared Fecal Calprotectin Assay.

Immunoassay	Capture Antibody Type	Detection Antibody Type	Standard/Calibrator Material	Control Material
Genova PhiCal Test	Polyclonal (Rabbit)	Polyclonal (Rabbit)	Recombinant human calprotectin	Recombinant human calprotectin
Eurospital Calprest	Polyclonal (Rabbit)	Polyclonal (Rabbit)	Recombinant human calprotectin	Recombinant human calprotectin
Eurospital Calprest NG	Polyclonal (Rabbit)	Monoclonal (Mouse)	Recombinant human calprotectin	Recombinant human calprotectin
Inova QUANTA Flash Calprotectin	Polyclonal	Monoclonal	Recombinant human calprotectin	Recombinant human calprotectin
BUHLMANN FCAL ELISA	Monoclonal	Monoclonal	Native human calprotectin	Native human calprotectin
BUHLMANN FCAL turbo	Polyclonal	Polyclonal	Native human calprotectin	Not specified (Traceable to recombinant)
Diasorin LIAISON Calprotectin	Monoclonal (Mouse)	Monoclonal (Mouse)	Recombinant human calprotectin	Recombinant human calprotectin
ALPCO Calprotectin Chemiluminescence ELISA	Monoclonal (Mouse)	Monoclonal (Mouse)	Native human calprotectin	Native human calprotectin
ALPCO Calprotectin Immunoturbidimetric (IT)	Monoclonal (Mouse)	Monoclonal (Mouse)	Native human calprotectin	Native human calprotectin

Challenge of Antibody use, Calibration, or Matrix? The figure above from Johnson et al. 2022 demonstrates the issue at the heart of this poster. When the same stool samples are measured over various assays made by different manufacturers, a wide range of results per stool occurs. Could this be the reason for the issues related to the grey zone, could it be due to the choices in the antibodies, calibration material, and even how each company recommends extracting the stools, that such a large range then becomes possible?

Results (cont.)

Table 2. Comparison of Cut-Offs for Each 510K Cleared Fecal Calprotectin Assay.

Assay Name	Normal/Negative	Borderline/Gray-zone	Elevated/Abnormal
Genova PhiCal™ Test	< 50 $\mu\text{g}/\text{g}$	50–120 $\mu\text{g}/\text{g}$	> 120 $\mu\text{g}/\text{g}$
Eurospital Calprest®	< 50 mg/kg	50–100 mg/kg	> 100 mg/kg
Eurospital Calprest® NG	< 50 mg/kg	50–120 mg/kg	> 120 mg/kg
Inova QUANTA Flash® Calprotectin	< 50 mg/kg	50 to > 120 mg/kg	> 120 mg/kg
BUHLMANN FCAL & turbo	< 80 $\mu\text{g}/\text{g}$	80–160 $\mu\text{g}/\text{g}$	> 160 $\mu\text{g}/\text{g}$
Diasorin LIAISON® Calprotectin	< 50 $\mu\text{g}/\text{g}$	50–120 $\mu\text{g}/\text{g}$	> 120 $\mu\text{g}/\text{g}$
ALPCO Calprotectin	< 50 $\mu\text{g}/\text{g}$	50–100 $\mu\text{g}/\text{g}$	> 100 $\mu\text{g}/\text{g}$
ALPCO IT (Immunoturbidimetric)	< 50 $\mu\text{g}/\text{g}$	50–100 $\mu\text{g}/\text{g}$	> 100 $\mu\text{g}/\text{g}$

Table 4. Comparison of Values of Various Manufacturers' Calprotectin Assays.

Sample #	ALPCO CLIA	ALPCO IT	Diasorin CLIA	Inova CLIA	Buhlmann IT	Clinical Diagnosis
1	194	501	148	321	756	IBD, Crohn's
2	559	413	955	575	2044	IBD, UC
3	106	403	94	221	420	IBD, Crohn's
4	415	374	545	530	1493	IBD, UC or CD
5	55	178	34	34	129	IBD, UC
6	157	131	390	412	1146	IBD, CD
7	300	99	205	190	426	IBD, UC
8	164	130	171	126	476	IBD
9	126	60	318	279	860	Other, bleeding
10	20	48	260	137	475	Other
11	58	42	76	44	244	Diverticulosis
12	33	40	117	127	338	Diverticulosis
13	8	30	6	30	26	Hemorrhoids
14	13	29	59	46	110	IBS
15	11	22	41	37	105	Other, bleeding
16	13	21	34	44	83	IBS
17	7	19	32	35	113	Other, anemia
18	3	17	6	25	14	IBS, diarrhea
19	16	13	23	51	70	Polyoid mucosa
20	6	8	14	38	63	Other

Legend: Green = sample value under the manufacturer-indicated assay cut-off; Yellow = Grey-zone/borderline; Pink = positive/above assay grey-zone.

In this cohort, the Buhlmann IT and to a limited degree the Inova CLIA yielded some samples in the clinical "grey zone" of 100-250 $\mu\text{g}/\text{g}$, that were discordant with their clinical diagnosis. The major questions are how often does this happen in the clinic and is it assay dependent?

Calprotectin Assay Comparison Table			
Assay Name	Clinical Sensitivity	Clinical Specificity	False Positive Rate
Genova PhiCal™ Test	74.9%	94.9%	5.1%
Eurospital Calprest®	96.9%	85.0%	15.0%